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Dimensional instabilities of an electron gas in a quantum dot
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Received 10 June 1992

Absiract, Instabilities are found in an interacting electron gas confined in a three-
dimensional quantum dot as a function of magnetic field. These instabilities involve
transitions between one-, two- and three-dimensional electron systems. In contrast to
what is found for the non-interacting eiectron case, these dimensional instabilities can
occur in essentially isotropic quantum dots.

There has been much interest in possible instabilities in two- and three-dimensional
interacting electron gases in strong magnetic fields [1] and, more recently, in two-
dimensional electron gases as the third degree of freedom is introduced [2, 3]. The
current level of flexibility in semiconductor microstructure design now allows the
possibility of confining a three-dimensional electror gas (3DEG) in all three directions,
forming so-called quantum dots [4, 5]. The strength of the confinement in the
three directions is essentially a controllable parameter as is the number of electrons
in the dot. The presence of image charges in nearby gates and dielectric layers
can, according to the specific dot design, affect the form of the effective interaction
between two electrons within the dot. The effects of the electron—electron interaction
in a mwo-dimensional quantum dot lying in the xy-plane have already been shown
to be sighificant [6~10]. Because of the computational complexity, however, litile
theoretical work [11] has yet been performed on the effects of the electron—electron
interaction in the more realistic case of three-dimensional dots.

In this work we consider a simple, analytically solvable model of an interacting
electron gas in a three-dimensional parabolic quantum dot. The model predicts
that the freedom of motion of the electrons in the third (z) direction can lead to
instabilities in the quantum dot electron gas. This behaviour results from the interplay
of the electron-electron interaction, the Pauli exclusion principle, the single-particle
confinement energy and the cyclotron energy. We show that for reasonably isotropic
quantum dots, in contrast to the non-interacting electron system (i) a stable one-
dimensional gas (IDEG) phase can exist for a range of magnetic fields, (ii) a two-
dimensional gas (2DEG) phase can exist that is stable for all magnetic fields, (iii)
these phases can survive in the presence of vanishingly small anisotropies either in
the dot shape, or in the electron-electron interaction. Finally we discuss physically
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observable consequences of these dimensional instablities, and the validity of the
present simple model.

Our model Hamiltonian for a three-dimensional quantum dot with a magnetic
field B along the z-direction is a generalization of that introduced in [9). The
present Hamiltonian H allows for a wide range of possible dot parameters resulting
from differing experimental designs, while still permitting analytic solutions. The dot
size (i.e. parabolic curvature) in the z-direction (wy,) is allowed to differ from that
in the zy-plane (w;). Also we attempt to mimic the effects of image charges in
adjacent semiconductor layers and gates by allowing the strength of the electron-
electron interaction in the z-direction (£2,) to differ from that in the zy plane ().
The electron-electron interaction potential is now given by

V(r,r;) =3V — im Qe —r; P = dm" Q|2 — 252 (1)
The positive parameters Vj, £ and §2, can be chosen to model dots of different sizes
and materials as discussed in [9]. The electron position r; = (=, y;, #;) = (r; 3 2;)-
The dot contains N interacting electrons with effective mass m”, negative charge —e,
g-factor g* and spin components {s, .} along the 2-axis. The momentum and vector
potential associated with the ith electron are given by p; and A; respectively, and
up is the Bohr magneton. The Hamiltonian is given by

1 eA; 2.1 » 2 2 2.2
H= S Z:: (p, + -'—‘c ) + -2~m z{:(wolf'"‘lll -+ Wy &
+YV(rr)—gusBY s, 2)
<3 [

and is separable into an xy-dependent part H({r;,}) and a z-dependent part
H,({z;}). As shown in [9], H can be diagonalized exactly by introducing centre-
of-mass ladder operators (A* and B*) and relative mode ladder operators (af; and
b?}). Likewise H, can be diagonalized using centre-of-mass ladder operators C* and
relative mode ladder operators cf; where

ok = (1/2m* By, W2 (m* Qy, ;5 Fipij.,)- G)

In this work we define 2, = +/w?, — NOZ, w3(B) = wi + w?/4, (B) =
\'/mg(B)—Nﬂz, w, = eB/m*c and m, is the free-electron mass. We have

made the coordinate transforms R = (X,Y,Z) = (1/N)};r; and ry; =
(zi52¥i>%;) = v; —r; and have defined the corresponding momentum Operators
P = (Py,Py,Pg) = 3, p; and p;; = (p;; .1 Pij g Pij,;) = P; — p;- 1n addition,
we take wy, > NVY2Q_ and wy > NV2Q 5o that all N electrons remain confined
to the dot (see later). For simplicity, we consider the magnetic field, or the g-factor,
to be sufficiently large that the electrons in the dot are spin polarized, In the InSb
quantum dots of [4] where fiw, = 7.5 meV, for example, a field as small as 3 T is
sufficient to ensure spin polarization for N = 4 electrons [12].
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The Hamiltonian H can be solved exactly analytically. For a particular magnetic
field w;, the ground state is a semsitive function of the strength of the electron-
electron interaction, the confinement energies and the particle number. As the dot
parameters are varied, there are three possible regimes (IDEG, 2DEG and 3DEG) each
of which corresponds to a different dimensional behaviour of the ground and lowest
excited states. We first describe these regimes, and then give the stability criterion
for each.

1DEG regime. In this regime the motion of the electrons is confined to the =z-
direction and the total angular momentum J is zero. (In a non-interacting picture,
the electrons would all be occupying the lowest xzy-plane subband.) The electrons
have reduced their mutual interaction energy by separating in the =z-direction.
Using the notation of [9] the ground state of H in the 1DEG regime is given by
¥p = I1;¢; cf;|0) and has a cotresponding energy
Eyp = hwg( B)+ (N =1)(N+1)Q, +(N~1)h( B)+ Sy, —(g"m* [4m5) Nuw,]

+3N(N - D)V, /2. )

The spatial part of the corresponding wavefunction is given by
¥ip = {H(m*ﬂuzzij - iPij,z)}‘I‘u )
i<i
where U, is the zero-point wavefunction

m*

o= exp (— L BYX 4 Y2 4, 2

- oy DB + 48 + R0, 31)- ©
1<f

3DEG regime. As the magnetic field is increased, it becomes energetically
favourable for the electrons to separate in the xy-plane, and the angular momentum
becomes non-zero. The crossover from the 1D to 3D regimes occurs when
antisymmetric combinations of states like a}; IT;.; ch0) (with i,5,k < N — 1)
become lower in energy than [];.; C;'fi {0 (with #,7 < N). The electrons are now
- moving in all three directions. As the magnetic field is increased further, the ground
state contains increasing powers of the a;':,. operators thereby increasing the anguiar
momentum in the zy-plane.

2DEG regime. For large magnetic field, the electrons all move in the zy-plane
and do not need to separate in the z-direction. (In the non-interacting picture, the
electrons now essentially occupy the lowest z-direction subband. This is the limit
implicitly assumed in [6]-{10].) The ground state in the 2DEG regime has a high
angular momentum J, and is given by W,n =[] ;af|0) with a corresponding
energy

Exp = Bwg(B) + 3(N = (N 4 2)Qy(B) — { N(N = 1+ g*m* /my)w]
+3N(N = )V,/2 + Lhwy, + 1(N - 1)AQ, . %)
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The spatial part of the corresponding wavefunction has the Vandermonde form

V¥p = { [ (2 —iw; )}‘I’o- ®)

i<y

We would like to point out that this work considers sufficiently strong zy-confinement
(i.e. wp > N/2Q) that the angular momentum of the ground state in the 2DEG regime
corresponds to an effective filling factor [7] v = 1, ie. J = N(N —1)/2, and the
higher J-states are excited modes [13]. The softening of these higher J-modes when
wy = NY2Q is discussed in relation to figures 2 and 3, and is the subject of [7)
and [8]. We emphasize that these higher J-states are still two-dimensional in the
zy-plane [7, 8].

The stability conditions for the above ID, 2D and 3D regimes can be expressed
in terms of critical magnetic fields. We define parameters A = (Q,/0)? and
6 = (wyfwy,)? which describe the degree of anisotropy in the electron-electron
interaction and the dot confinement respectively. The IDEG regime will be stable
compared to the 3DEG regime when w, < wy, where

_ S(wE— NQ?) — (N — 1)(wh - NX§Q7) o
Wt = (N —1)(6(w] - NA§Q2))Y2 ) ®)

For w,; < w, < w, the 3DEG is stable, where

= SN~ 1) = NO?) — (- V2607 0
“e = TN DR - AN .o

For w, > wy the 2DEG is stable. For N > 2 electrons w,; is always less than wy. In
the special case N = 2, w = w_, and no 3DEG regime exists.

Depending on the values of the parameters N, A, &, w, and £, these critical
fields w,; and w, may be positive or negative. For a stable IDEG phase to exist at
finite magnetic fields, we need w; > 0 which implies

(Q/wp)® > [(N = 1)? = 8] /INS((N - 1)2X - 1)]. (11)

Similarly, for a 3DEG—2DEG transition to occur at finite fields, we need w, > 0
which implies

(Q/en)? <[6(N = 1)? = 1/[NE((N - 1)* - N)]. (12)

Figure 1 shows the three possible types of behaviour (I, II and IIT) of an electron
gas in a quantum dot as a function of magnetic field for a given choice of N, A,
8, wy and £, Figures 2 and 3 show the occurrence of these regions I, II and III
as a function of (2/wy)? and the anisotropy parameters A and §. In figure 2 the
quantum dot confinement is isotropic (6 = 1) but the electron-electron interaction
is aliowed to be anisotropic. In figure 3 the electron-¢lectron interaction is isotropic
(A = 1) but the confinement can be anisotropic. The boundaries between regions
I, I and III in figures 2 and 3 can easily be obtained from (11) and (12) by setting
¢ =1 and XA = 1 respectively. The most surprising conclusions from figures 2 and
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Figure L. The three possible types of behavicur (I, 1l and III) of an interacting electron
gas in a quantum dol as a functicn of magnetic field w..

3 are that, for vanishingly small anisotropies (i.c. A,é — 1) in the quantum dot, (i)
a IDEG phase exists for w, < w (region I}, and (ii} the interacting electron gas
can have a stable 2DEG phase for all magnetic fields (region IT). We emphasize that
for a non-interacting electron gas (i.e. @ = 0), the behaviour in figure 2 is always
described by region I and is independent of A. From figure 3, the non-interacting
electron gas in a reasonably isotropic dot (i.e. § ~ 1) also corresponds to region IIL
A non-interacting electron gas will only vield a IDEG phase for extremely anisotropic
dots, ie. when § > (N — 1) which for N = 4 implies § > 9. Likewise, a 2DEG
phase that is stable for all magpetic fields will form only if & < (N — 1)~2, which
for N = 4 implies § < 0.11. An extreme numerical example of the difference
between the interacting and the non-interacting electron gas in a dot is as follows.
Consider the InSb dot with N = 4, fw, = 7.50 meV, fiwy, = 4.33 meV (ie. § =3),
hQ = 1.53 meV and A2, = 2.16 meV (Le. A = 2). The IDEG phase is stable up
to 12.5 T In the non-interacting clectron gas the IDEG is afways unstable. Likewise,
the interacting electron gas would only form a 2DEG phase above 112 T while the
non-interacting system would form a 2DEG phase above 4.5 T!

Regions IA and IIA in figures 2 and 3 correspond to the regimes wy,, < N2,
and wy; < N'/29Q respectively where higher-energy modes become soft. The thick
boundary line between I and 1A is given by (2 /w,)? = (N A8)~1, while that between
I and 1A is given by (Q/w,)? = N~'. In regions IA and IIA, the N-electron gas
within our model is energetically unstable to loss of one electron, forming an N — 1
electron gas. For an electron—electron interaction of more Coulombic form, the Nth
electron would not actually leave the dot. Instead it would settle in an orbit of large
radius, hence forming a new ground state of the same dimensionality. Region HA
in figure 2 would correspond to a2 2DEG phase with large angular momentum (ie.
- v < 1) as discussed in [7] and [8]. Similarly region LA would correspond to a new
1DEG phase along the z-direction.

We will illustrate the physical consequences of the above dimensional instabilities
by commenting on the difference between the IDEG and 2DEG regimes. There are
low-lying energy excitations in the 2DEG regime with angular momenta AJ = 1,2,...,
above the ground-state value N(N — 1)/2. These excitations have energies of the
form
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Figure 2. Regions 1, II and Il as a function of the scaled electron—electron interaction
{f2/wy)? and the electron-electron interaction anisotropy A. The dot confinement is
isotropic (§ = 1).
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Figure 3. Regions I, I and Il as a function of (£2/uy)® and the dot confinement
anisotropy 6. The clectron—ciectron interaction is Isotropic (A = I). The non-interacting
electron gas corresponds to the (£2/wp)? = 0 axis.

AEyp = nh(wy( B) — w,/2) + mAi(Qy( B) ~ w./2) (13)

where n and m are non-negative integers such that n + m = AJ. The excitation
energies in (13) can depend strongly on the magnetic field strength. We note that
the antisymmetry requirement on the total NV-electron wavefunction leads to missing
modes, e.g. m = 1 (see in [13]). By contrast the low-lying excitations in the IDEG
regime correspond to J = 0, The corresponding energics are independent of the
magnetic field strength, and are of the form

A Ep = nhwy, + mhQ,, (14)

where the integers n and m no longer satisfy n + m = AJ. The magnetic field
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dependence of optical transition energies and various thermodynamic properties such
as heat capacity will therefore differ for the 20EG and iDEG regimes.

We now discuss the validity of the present model. Many recent far-
infrared absorption measurements (e.g. [4]) have shown that the experimental z—y
confinement is nearly parabolic, based on the generalized Kohn theorem [14, 7).
As shown in this paper, the additional use of a parabolic confinement in the z-
direction, together with a harmonic electron-electron interaction, enables analytic
solutions to be obtained for the otherwise complicated, three-dimensional many-
body problem. The actual form of the experimental z-confinement potential will
depend strongly on the specific device design, as borne out by detailed numerical
calculations [11]. However, if limited diffusion of the (z-direction) double barrier is
allowed during the growth of the vertical-transport structures of Tewordt et al [5], a
roughly parabolic z-confinement potential could be prepared. The resulting magnetic-
field dependence of the conductance peaks (ie. emergy levels) of such structures
would differ dramatically according to the value of the confinement anisotropy &, as
discussed above. The harmonic electron—electron interaction is obviously not correct
for all electron separations r, but the interaction parameters can be adjusted to give
the best fit to the true interaction for the dominant range of r [9]. We note that the
present model yields reasonable agreement with [7] and [15] for the excitation spectra
of N £ 4 electrons in small swo-dimensional dots, suggesting that the overall physics
is mot too sensitive to the form of the interaction for small dots. The present model
can also describe the previously mentioned fractional ground states (ie. v < 1) of [7]
and [8] if the next term in the Taylor series of a cut-off Coulomb interaction |r; —;|*
is included in perturbation theory [16].

Despite the over-simplified form of the present model, we believe that the results
obtained warrant future experimentai (and pumerical) investigation into dimensional
instabilities in quantum dot samples.

The author is extremely grateful to E M Restrepo and M C Payne. This work
was supported by COLCIENCIAS (Colombia) and St John’s College, Cambridge
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