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LElTER TO THE EDITOR 

Dimensional instabilities of an electron gas in a quantum dot 

N F Johnsont 
Departamento de Fisica, Universidad de Los A n d q  Bogota A A 4976, Colombia 

Received 10 June 1992 

Abslraet Instabilities are found m an interning electron gas mn6ned in a h e -  
dimensional quantum dot as a function of magnetic field. TXIhese instabilities involve 
transitions between one-, two- and three-dimensional electron systems. In mntrasi to 
what is found for the non-interading eleclmn case, these dimensional instabilities cdn 
oculr in essentially isotropic quantum dofs. 

There has been much interest in passible instabilities in two- and threedimensional 
interacting electron gases in strong magnetic fields [l] and, more recently, in two- 
dimensional electron gases as the thiid degree of freedom is introduced [2, 31. The 
current level of Uexibility in semiconductor microstructure design now allows the 
possibility of confining a three-dimensional electron gas (3DEC) in all three directions, 
forming so-called quantum dots [4, 51. The strength of the confinement in the 
three directions is essentially a controllable parameter as is the number of electrons 
in the dot. The presence of image charges in nearby gates and dielectric layers 
can, according to the specific dot design, affect the form of the effective interaction 
between two electrons within the dot. The effects of the electron-slectron interaction 
in a fwo-dimensional quantum dot lying in the zy-plane have already been shown 
to be sighiscant [&lo]. Because of the computational complexity, however, little 
theoretical work [11] has yet been performed on the effects of the electron+lectron 
interaction in the more realistic case of threedimensional dots. 

In this work we consider a simple, analytically solvable model of an interacting 
electron gas in a threedimensional parabolic quantum do t  The model predicts 
that the freedom of motion of the electrons in the third ( z )  direction can lead to 
instabilities in the quantum dot electron gas. This behaviour results from the interplay 
of the electron-electron interaction, the Pauli exclusion principle, the single-particle 
confinement energy and the cyclotron energy. We show that for reasonably hotropic 
quantum dots, in contrast to the non-interacting electron system (i) a stable one- 
dimensional gas (IDEG) phase can exist for a range of magnetic fields, (i) a two- 
dimensional gas (ZDEG) phase can exist that is stable for all magnetic fields, (iii) 
these phases can survive in the presence of vanishingly small anisotropies either in 
the dot shape, or in the electron-electron interaction. Finally we discuss physically 

t A d d m  from 1 September: Physics Department, aarendon laboratory, Oxbrd University, UK. 
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observable consequences of these dimensional instablities, and the validity of the 
present simple model. 

Our model Hamiltonian for a three-dimensional quantum dot with a magnetic 
field B along the zdirection is a generalization of that introduced in [9]. The 
present Hamiltonian H allows for a wide range of possible dot parameters resulting 
from differing experimental designs, while still permitting analytic solutions. The dot 
size (Le. parabolic curvature) in the zdirection (wuz) is allowed to differ from that 
in the ry-plane (wu). Also we attempt to mimic the effects of image charges in 
adjacent semiconductor layers and gates by allowing the strength of the electron- 
electron interaction in the zdirection (a,) to Mer from that in the r y  plane (a). 
The electron-electron interaction potential is now given by 

(1) V(ri ,r j )  = 3vU - !p*R21ri,ll - rj,llI 2 1  - Fm*a,lzi 2 - zjj'. 

The positive parameters Vu, 0 and a, can be chosen to model dois of dif€erent sizes 
and materials as discussed in 191. The electron position ri = ( r i , y i , z i )  = ( r i , , , ; z i ) .  
The dot contains N interacting electrons with effective mass m', negative charge -e, 
g-factor g* and spin cnmponents { s i , + }  along the z-axis. The momentum and vector 
potentia1 associated with the ith electron are given by pi  and Ai respectively, and 
p n  is the Bohr magneton. The Hamiltonian is given by 

and is separable into an zydependent part HII({ri,ll}) and a zdependent part 
Hz({z i } ) .  As shown in 191, HI, can be diagonalized exactly by introducing czntre- 
of-mass ladder operators (A* and B*) and relative mode ladder operators (a;  and 
b;). Likewise H ,  can be diagonalized using centre-of-mass ladder operators C* and 
relative mode laadder operators c; where 

c*. v = (1/2m*fi~o,) ' /Z(m*~ul+ij  'F ipij,+). (3) 

= w: + w:/4, Q U ( B )  = In this work we define aUz = 

d m ,  wc = eB/m'c  and mu is the free-electron mass. We have 
made the coordinate transforms R = ( X , Y , Z )  = ( l / N ) E ; r i  and r i j  = 
(xij ,yij ,zi j)  = ri - r .  and have defined the corresponding momentum operators 
P = (Px,P,,Pz) = h i p i  and p i j  = ( p . .  :1,=j p i j , v , p i j , z )  = p i  -pj. In addition, 
we take wu8 > N ' k l ,  and wu > N'/2R so that all N electrons remain confined 
to the dot (see later). For simplicity, we consider the magnetic field, or the g-factor, 
to be sufficiently large that the electrons in the dot are spin polarized. In the InSb 
quantum dots of [4] where hu = 7.5 meV, for example, a field as small as 3 T is 
sufficient to ensure spin polarization for N = 4 electrons [12]. 
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The Hamiltonian H can be solved exactly analytically. For a particular magnetic 
field wc, the ground state is a sensitive function of the strength of the electron- 
electron interaction, the confinement energies and the particle number. As the dot 
parameters are varied, there are three possible regimes (IDEO, ZDEG and ~DEG) each 
of which corresponds to a different dimensional behaviour of the ground and lowest 
excited states. We 6rst describe these regimes, and then give the stability criterion 
for each. 

1DEG repime. In this regime the motion of the electrons is confined to the t- 
direction and the total angular momentum J is zero. (In a non-interacting picture, 
the electrons would all be occupying the lowest zy-plane subband.) The electrons 
have reduced their mutual interaction energy by separating in the tdirection. 
Using the notation of (91 the ground state of H in the IDEO regime is given by 
8, E ni,j ~$10) and has a corresponding energy 

t 3N(N - 1)V& 

The spatial part of the corresponding wavefunction is given by 

'ID = [ n(m*'Uzzi~ -iPtj,z) qU 
i <i i 

where is the zero-point wavefunction 

qU = exp (- - + w U ( ~ ) ( x z  t Y*) t uuzz*] Nm' 

m* 
2N6 i < j  

- - ClQ,(B)(4j + Y?j) + '20,Z:jl 

~ D E G  regime. As the magnetic field is increased, it becomes energetically 
favourable for the electrons to separate in the ry-plane, and the angular momentum 
becomes non-zero: The crossover from the 1D to 3D regimes occurs when 
antisymmetric combinations of states like a k , n , , j  ~$10) (with i , j , k  6 N - 1) 
become lower in energy than nIiCj ~$10) (with i , j  < N). The electrons are now 
moving in all three directions. As the magnetic field is increased further, the ground 
state contains increasing powers of the a$ operators thereby increasing the angular 
momentum in the xy-plane. 

ZDEG regime. For large magnetic field, the electrons all move in the zy-plane 
and do not need to separate in the zdirection. (In the non-interacting picture, the 
electrons now essentially occupy the lowest zdirection subband. This is the limit 
implicitly assumed in [6]-(10].) The ground state in the ZDEG regime has a high 
angular momentum J ,  and is given by q m  3 n,,, a$lO} with a corresponding 
energy 

E,=b[w,(B)t $ ( N -  l)(N+Z)QU(B)-:N(N- l tg*m*/m&c]  

+3N(N - 1)Vu/2+ $iwu, t i ( N  - l)hnuJ. Q 
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The spatial part of the corresponding wavefunction has the Vandermonde form 

We would l i e  to point out that this work considers sufficiently strong zyconbnement 
(Le. wo > N'I'a) that the angular momentum of the ground state in the ZDEG regime 
corresponds to an effective filling factor [I v = 1, i.e. J = N (  N - 1)/2, and the 
higher J-states are excited modes [13]. The softening of these higher J-modes when 
wo = N'&? is discussed in relation to figures 2 and 3, and is the subject of [7l 
and [SI. We emphasize that these higher J-states are still two-dimensional in the 
zy-plane p, 81. 

The stability conditions for the above 1D, ZD and 3D regimes can be expressed 
in terms of critical magnetic fields. We define parameters X = (n,/Q)' and 
6 = ( ~ , , / w , , , ) ~  which describe the degree of anisotropy in the electron-electron 
interaction and the dot confinement respectively. The lDEG regime will be stable 
compared to the ~ D E G  regime when wc < wcl, where 

(9) 
6 ( 4  - Nil')  - (N - l)'(w; - NX 6n') 

( N  - 1)(6(wi - NX6n2) ) ' / 2  wc1 = 

For wc, < wc < wa the 3DEG is stable, where 

6 ( N  - 1)'(w; - Nn')  - (U: - NX 6R2) .. 
( N  - 1)(6(wi - NX 6Qz))'12 

w, = 

For wc > wcz the ZDEG is stable. For N > 2 electrons wGl is always less than wa. In 
the special case N = 2, wc, = U, and no 3DEG regime exists. 

Depending on the values of the parameters N, A, 6, wo and i2, these critical 
fields wcl and w, may be positive or negative. For a stable lDEG phase to exist at 
finite magnetic fields, we need wcl > 0 which implies 

(~ /~o)2>[(N-1)Z-6] / [N6((N-1) 'X-1) ] .  (11) 

Similarly, for a ~DEG-ZDEG transition to m u r  at finite fields, we need w, > 0 
which implies 

(n/w,)*  < [6(N - 1)' - 1]/[N6((N - 1)'- A)]. (12) 

Figure 1 shows the three possible types of behaviour (I, I1 and 111) of an electron 
gas in a quantum dot as a function of magnetic field for a given choice of N ,  A, 
6, wo and n. Figures 2 and 3 sbow the Occurrence of these regions I, I1 and I11 
as a function of (i2/wo)2 and the anisotropy parameters X and 6. In figure 2 the 
quantum dot confinement is isotropic (6 = 1) but the electron4ectron interaction 
is allowed to be anisotropic. In figure 3 the electron-electron interaction is isotropic 
(A = 1) but the confinement can be anisotropic. The boundaries between regions 
I, II and I11 in figures 2 and 3 can easily be obtained from (11) and (12) by setting 
6 = 1 and X = 1 respectively. The most surprising conclusions from figures 2 and 
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0 increasing wc 

Rgum 1. me three possible o/pg of behaviour (I, I I  and Ill) of an interacting electron 
gas in a quantum dot as a function of magnetic Bcld wc. 

3 are that, for vanishingly small anisotropies (i.e. A, 6 + 1) in the quantum dot, (i) 
a IDEG phase exists for wc < wc, (region I), and (U) the interacting electron gas 
can have a stable ZDEG phase for all magnetic fields (region 11). We emphasize that 
for a nominteructing electron gas (i.e. i2 = O), the behaviour in figure 2 is always 
described by region I11 and is independent of A. From figure 3, the non-interacting 
electron gas in a reasonably isotropic dot (Le. 6 - 1) also corresponds to region 111. 
A non-interacting electron gas will only yield a 1DEG phase for extremely anisotropic 
dots, i.e. when 6 > ( N  - 1)’ which for N = 4 implies 6 > 9. Likewise, a ZDEG 
phase that is stable for all magnetic fields will form only if 6 < ( N  - 1)-*, which 
for N = 4 implies 6 < 0.11. An extreme numerical example of the difference 
between the interacting and the non-interacting electron gas in a dot is as follows. 
Consider the InSb dot with N = 4, bo = 7.50 meV, Twuz = 4.33 meV (Le. 6 = 3), 
hi2 = 1.53 meV and hQZ = 2.16 meV (Le. X = 2). The lDEG phase is stable up 
to E 5  T. In the non-interacting electron gas the IDEG is ulwqs unstable. Likewise, 
the interacting electron gas would only form a ZDEG phase above 112 T while the 
non-interacting system would form a ZDEG phase above 4.5 T! 

Regions IA and IIA in figures 2 and 3 correspond to the regimes wgz < N1/’i2, 
and wo < N1I2i2 respectively where higher-energy modes become soft. The thick 
boundary line between I and IA is given by (Q/wO)’ = (NM-’,  while that between 
I1 and I I A  is given by (n/w,)’ = N-’. In regions IA and IIA, the N-electron gas 
within our model is energetically unstable to loss of one electron, forming an N - 1 
electron gas. For an electron-electron interaction of more Coulombic form, the Nth 
electron would not actually leave the dot. Instead it would Settle in an orbit of large 
radius, hence forming a new ground state of the same dimensionality. Region I I A  
in figure 2 would correspond to a iDEG phase with large angular momentum (i.e. 
v < 1) as discussed in [7] and [SI. Similarly region IA would correspond to a new 
lDEG phase along the zdirection. 

We will illustrate the physical consequences of the above dimensional instabilities 
by commenting on the difference between the IDEG and ZDEG regimes. There are 
low-lying energy excitations in the ZDEG regime with angular momenta A J  = 1,2, .. ., 
above the ground-state value N (  N - 1)/2. These excitations have energies of the 
form 
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mre 2 Regions 1 11 and 111 as a function d the scaled elenmn-eleclmn interacfion 
( f l / w ~ ) ~  and the eledron-electron interaction anisowow A. The dol mnlinemenl is 
isotropic (6 = 1). 
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P@E 3. Regions I, n and 111 as a function of ( f l /wo)? and the dol mnfinement 
anisomow 6. nte eledron-elecfron intenclion b htrompic (A = 1). The non-interacting 
electron gas corresponds to the (n/wo)2 = o axis 

A E ,  = &(Uo( B) - 4 2 )  + mfi(Clo(B) - wJ2) (13) 

where n and m are non-negative integers such that n + m = AJ. The excitation 
energies in (13) can depend strongly on the magnetic field strength. We note that 
the antisymmetry requirement on the total Nelectron wavefunction leads to &sing 
modes, e.g. m = 1 (see in [13]). By contrast the low-lying excitations in the lDEG 
regime correspond to J = 0. The corresponding energies are independent of the 
magnetic field strength, and are of the form 

A E,, = n h ,  + mhn,, (14) 

where the integers n and m no longer satisfy n + m = AJ.  The magnetic field 
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dependence of optical transition energies and various thermodynamic properties such 
as heat capacity will therefore differ for the ZDEG and IDEG regimes. 

We now discuss the validity of the present model. Many recent far- 
infrared absorption measurements (e.g. [4]) have shown that the experimental zy 
confinement is nearly parabolic, based on the generalized Kohn theorem 114, 7. 
As shown in this paper, the additional use of a parabolic confinement in the z-  
direction, together with a harmonic electron-electron interaction, enables analytic 
solutions to be obtained for the othenvise complicated, threedimensional many- 
body problem. The actual form of the experimental zconfinement potential will 
depend strongly on the specific device design, as borne out by detailed numerical 
calculations [ll]. However, if limited difhsion of the (zdirection) double barrier is 
allowed during the growth of the vertical-transport structures of 'kwordt et a1 [5], a 
roughly parabolic zconfinement potential could be prepared. The resulting magnetic- 
field dependence of the conductance peaks (Le. energy levels) of such structures 
would differ dramatically according to the value of the confinement anisotropy 6, as 
discussed above. The harmonic electronelectron interaction is obviously not correct 
for all electron separations r, but the interaction parameters can be adjusted to give 
the best fit to the true interaction for the dominant range of r 191. We note that the 
present model yields msonable agreement with [7] and [U] for the excitation spectra 
of N 6 4 electrons in small huodimensional dots, suggesting that the overall physics 
is not too sensitive to the form of the interaction for small dots. The present model 
can also describe the previously mentioned fractional ground states (Le. v < 1) of 17 
and [SI if the next term in the Bylor series of a cut-off Coulomb interaction Iri - r j  l4 
is included in perturbation theory [16]. 

Despite the over-simplified form of the present model, we believe that the results 
obtained warrant future experimental (and numerical) investigation into dimensional 
instabilities in quantum dot samples. 

The author is extremely grateful to E M Restrepo and M C Payne. This work 
was supported by COLCIENCIAS (Colombia) and St John's College, Cambridge 
University (UK). 
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